Explicit Methods for Modularity of K3 Surfaces and Other Higher Weight Motives
Institute for Computational and Experimental Research in Mathematics
Providence, October 19–23, 2015
Contents

1 Overview

2 Construction of the Sato-Tate group [S, BK1, BK2]

3 Example in weight 1: abelian varieties [FKRS]

4 Example in weight 2: K3 surfaces [?]

5 Example in weight 3: hypergeometric motives [FKS]

6 References
Contents

1. Overview
2. Construction of the Sato-Tate group [S, BK1, BK2]
3. Example in weight 1: abelian varieties [FKRS]
4. Example in weight 2: K3 surfaces [?]
5. Example in weight 3: hypergeometric motives [FKS]
6. References
Motivation: equidistribution for L-functions

For a motive M (with \mathbb{Q}-coefficients), consider its L-function in the analytic normalization:

$$L(s) = \prod_p L_p(s) = \prod_p F_p(p^{-s})^{-1}, \quad F_p(T) = 1 - a_p T + \cdots.$$

Conjecture (generalized Sato-Tate conjecture; Serre, 1994)

The polynomials $F_p(T)$ are equidistributed for the image of Haar measure (via the characteristic polynomial map) on a specified compact Lie group $\text{ST}(M)$ (the Sato-Tate group).

E.g., the a_p vary like traces of random matrices in $\text{ST}(M)$.

Proposition

For any given degree, weight, and Hodge numbers (i.e., Gamma factors), there are only finitely many possible Sato-Tate groups.
Motivation: equidistribution for L-functions

For a motive M (with \mathbb{Q}-coefficients), consider its L-function in the analytic normalization:

$$L(s) = \prod_p L_p(s) = \prod_p F_p(p^{-s})^{-1}, \quad F_p(T) = 1 - a_p T + \cdots.$$

Conjecture (generalized Sato-Tate conjecture; Serre, 1994)

The polynomials $F_p(T)$ are equidistributed for the image of Haar measure (via the characteristic polynomial map) on a specified compact Lie group $\text{ST}(M)$ (the Sato-Tate group).

E.g., the a_p vary like traces of random matrices in $\text{ST}(M)$.

Proposition

For any given degree, weight, and Hodge numbers (i.e., Gamma factors), there are only finitely many possible Sato-Tate groups.
Motivation: equidistribution for L-functions

For a motive M (with \mathbb{Q}-coefficients), consider its L-function in the analytic normalization:

$$L(s) = \prod_p L_p(s) = \prod_p F_p(p^{-s})^{-1}, \quad F_p(T) = 1 - a_p T + \cdots.$$

Conjecture (generalized Sato-Tate conjecture; Serre, 1994)

The polynomials $F_p(T)$ are equidistributed for the image of Haar measure (via the characteristic polynomial map) on a specified compact Lie group $\text{ST}(M)$ (the **Sato-Tate group**).

E.g., the a_p vary like traces of random matrices in $\text{ST}(M)$.

Proposition

For any given degree, weight, and Hodge numbers (i.e., Gamma factors), there are only finitely many possible Sato-Tate groups.
Motivation: equidistribution for \(L \)-functions

For a motive \(M \) (with \(\mathbb{Q} \)-coefficients), consider its \(L \)-function in the analytic normalization:

\[
L(s) = \prod_p L_p(s) = \prod_p F_p(p^{-s})^{-1}, \quad F_p(T) = 1 - a_p T + \cdots.
\]

Conjecture (generalized Sato-Tate conjecture; Serre, 1994)

The polynomials \(F_p(T) \) are equidistributed for the image of Haar measure (via the characteristic polynomial map) on a specified compact Lie group \(\text{ST}(M) \) (the Sato-Tate group).

E.g., the \(a_p \) vary like traces of random matrices in \(\text{ST}(M) \).

Proposition

For any given degree, weight, and Hodge numbers (i.e., Gamma factors), there are only finitely many possible Sato-Tate groups.
Example: elliptic curves

Take $M = H^1(E)$ with E an elliptic curve over \mathbb{Q}.

If E has CM, then $\text{ST}(M)$ is the normalizer of $\text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$:

http://math.mit.edu/~drew/g1_D2_a1f.gif.

Equidistribution follows easily from CM theory (Hecke).

If E has no CM, then $\text{ST}(M) = \text{SU}(2)$:

http://math.mit.edu/~drew/g1_D1_a1f.gif

Equidistribution (i.e., the original Sato-Tate conjecture) is known but hard: it uses potential modularity of symmetric power L-functions (Taylor et al.).

If we consider E over a number field K, then the CM picture changes if the CM field is contained in K, as $\text{ST}(M)$ decreases to $\text{SO}(2, \mathbb{R})$:

http://math.mit.edu/~drew/g1_D3_a1f.gif.
Example: elliptic curves

Take $M = H^1(E)$ with E an elliptic curve over \mathbb{Q}.

If E has CM, then $\text{ST}(M)$ is the normalizer of $\text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$:

$$\text{http://math.mit.edu/~drew/g1_D2_a1f.gif.}$$

Equidistribution follows easily from CM theory (Hecke).

If E has no CM, then $\text{ST}(M) = \text{SU}(2)$:

$$\text{http://math.mit.edu/~drew/g1_D1_a1f.gif}$$

Equidistribution (i.e., the original Sato-Tate conjecture) is known but hard: it uses potential modularity of symmetric power L-functions (Taylor et al.).

If we consider E over a number field K, then the CM picture changes if the CM field is contained in K, as $\text{ST}(M)$ decreases to $\text{SO}(2, \mathbb{R})$:

$$\text{http://math.mit.edu/~drew/g1_D3_a1f.gif.}$$
Example: elliptic curves

Take $M = H^1(E)$ with E an elliptic curve over \mathbb{Q}.

If E has CM, then $\text{ST}(M)$ is the normalizer of $\text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$:

$$\text{http://math.mit.edu/~drew/g1_D2_a1f.gif}.$$

Equidistribution follows easily from CM theory (Hecke).

If E has no CM, then $\text{ST}(M) = \text{SU}(2)$:

$$\text{http://math.mit.edu/~drew/g1_D1_a1f.gif}.$$

Equidistribution (i.e., the original Sato-Tate conjecture) is known but hard: it uses potential modularity of symmetric power L-functions (Taylor et al.).

If we consider E over a number field K, then the CM picture changes if the CM field is contained in K, as $\text{ST}(M)$ decreases to $\text{SO}(2, \mathbb{R})$:

$$\text{http://math.mit.edu/~drew/g1_D3_a1f.gif}.$$
Example: elliptic curves

Take $M = H^1(E)$ with E an elliptic curve over \mathbb{Q}.

If E has CM, then $\text{ST}(M)$ is the normalizer of $\text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$:

$$\text{http://math.mit.edu/~drew/g1_D2_a1f.gif}.$$

Equidistribution follows easily from CM theory (Hecke).

If E has no CM, then $\text{ST}(M) = \text{SU}(2)$:

$$\text{http://math.mit.edu/~drew/g1_D1_a1f.gif}.$$

Equidistribution (i.e., the original Sato-Tate conjecture) is known but hard: it uses potential modularity of symmetric power L-functions (Taylor et al.).

If we consider E over a number field K, then the CM picture changes if the CM field is contained in K, as $\text{ST}(M)$ decreases to $\text{SO}(2, \mathbb{R})$:

$$\text{http://math.mit.edu/~drew/g1_D3_a1f.gif}.$$
Example: elliptic curves

Take $M = H^1(E)$ with E an elliptic curve over \mathbb{Q}. If E has CM, then $\text{ST}(M)$ is the normalizer of $\text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$:

http://math.mit.edu/~drew/g1_D2_a1f.gif.

Equidistribution follows easily from CM theory (Hecke).

If E has no CM, then $\text{ST}(M) = \text{SU}(2)$:

http://math.mit.edu/~drew/g1_D1_a1f.gif

Equidistribution (i.e., the original Sato-Tate conjecture) is known but hard: it uses potential modularity of symmetric power L-functions (Taylor et al.).

If we consider E over a number field K, then the CM picture changes if the CM field is contained in K, as $\text{ST}(M)$ decreases to $\text{SO}(2, \mathbb{R})$:

http://math.mit.edu/~drew/g1_D3_a1f.gif.
Example: elliptic curves

Take $M = H^1(E)$ with E an elliptic curve over \mathbb{Q}.

If E has CM, then $\text{ST}(M)$ is the normalizer of $\text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$:

http://math.mit.edu/~drew/g1_D2_a1f.gif.

Equidistribution follows easily from CM theory (Hecke).

If E has no CM, then $\text{ST}(M) = \text{SU}(2)$:

http://math.mit.edu/~drew/g1_D1_a1f.gif

Equidistribution (i.e., the original Sato-Tate conjecture) is known but hard: it uses potential modularity of symmetric power L-functions (Taylor et al.).

If we consider E over a number field K, then the CM picture changes if the CM field is contained in K, as $\text{ST}(M)$ decreases to $\text{SO}(2, \mathbb{R})$:

http://math.mit.edu/~drew/g1_D3_a1f.gif.
Overview

More examples to consider

For the rest of the talk, we will be interested in the following three classes of motives. Here K denotes an arbitrary number field (but you may assume $K = \mathbb{Q}$), w is the motivic weight, $(h^0,w,\ldots,h^w,0)$ is the Hodge vector, and $d = \sum_{p+q=w} h^p,q$ is the degree of the associated L-function.

- M has weight 1 and Hodge vector (g,g). This means that $M = H^1(A)$ for A/K an abelian variety of dimension g.
- M has weight 2 and Hodge vector $(1,20,1)$. In particular, we want $M = H^2(X)$ for X/K a K3 surface.
- M has weight 3 and Hodge vector $(1,1,1,1)$, e.g., a hypergeometric motive from the Dwork pencil

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = \lambda x_0 x_1 x_2 x_3 x_4.$$

\[\text{To force this, we must fix some extra data, e.g., the intersection pairing and the ample cone.}\]
More examples to consider

For the rest of the talk, we will be interested in the following three classes of motives. Here K denotes an arbitrary number field (but you may assume $K = \mathbb{Q}$), w is the motivic weight, $(h^{0,w}, \ldots, h^{w,0})$ is the Hodge vector, and $d = \sum_{p+q=w} h^{p,q}$ is the degree of the associated L-function.

- M has weight 1 and Hodge vector (g, g). This means that $M = H^1(A)$ for A/K an abelian variety of dimension g.

- M has weight 2 and Hodge vector $(1, 20, 1)$. In particular, we want $M = H^2(X)$ for X/K a K3 surface.

- M has weight 3 and Hodge vector $(1, 1, 1, 1)$, e.g., a hypergeometric motive from the Dwork pencil

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = \lambda x_0 x_1 x_2 x_3 x_4.$$
More examples to consider

For the rest of the talk, we will be interested in the following three classes of motives. Here K denotes an arbitrary number field (but you may assume $K = \mathbb{Q}$), w is the motivic weight, $(h^0,w,\ldots,h^w,0)$ is the Hodge vector, and $d = \sum_{p+q=w} h^p,q$ is the degree of the associated L-function.

- M has weight 1 and Hodge vector (g,g). This means that $M = H^1(A)$ for A/K an abelian variety of dimension g.
- M has weight 2 and Hodge vector $(1,20,1)$. In particular, we want $M = H^2(X)$ for X/K a K3 surface.
- M has weight 3 and Hodge vector $(1,1,1,1)$, e.g., a hypergeometric motive from the Dwork pencil

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = \lambda x_0 x_1 x_2 x_3 x_4.$$

\[\text{1To force this, we must fix some extra data, e.g., the intersection pairing and the ample cone.} \]
More examples to consider

For the rest of the talk, we will be interested in the following three classes of motives. Here K denotes an arbitrary number field (but you may assume $K = \mathbb{Q}$), w is the motivic weight, $(h^{0,w}, \ldots, h^{w,0})$ is the Hodge vector, and $d = \sum_{p+q=w} h^{p,q}$ is the degree of the associated L-function.

- M has weight 1 and Hodge vector (g, g). This means that $M = H^1(A)$ for A/K an abelian variety of dimension g.
- M has weight 2 and Hodge vector $(1, 20, 1)$. In particular, we want $M = H^2(X)$ for X/K a K3 surface.
- M has weight 3 and Hodge vector $(1, 1, 1, 1)$, e.g., a hypergeometric motive from the Dwork pencil

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = \lambda x_0 x_1 x_2 x_3 x_4.$$

To force this, we must fix some extra data, e.g., the intersection pairing and the ample cone.
Contents

1 Overview

2 Construction of the Sato-Tate group [S, BK1, BK2]

3 Example in weight 1: abelian varieties [FKRS]

4 Example in weight 2: K3 surfaces [?]

5 Example in weight 3: hypergeometric motives [FKS]

6 References
The Betti-Hodge realization and the Mumford-Tate group

Fix an embedding $K \hookrightarrow \mathbb{C}$. Let V denote the Betti (singular) cohomology of M with \mathbb{Q}-coefficients; then $\dim_{\mathbb{Q}} V = d$.

The duality $M \times M \to \mathbb{Q}(-w)$ induces a perfect bilinear pairing ψ on V. Let $\text{Gl}_\text{iso}(V, \psi)$ be the associated group of symplectic (if w is odd) or orthogonal (if w is even) similitudes.

The space $V_{\mathbb{C}} = V \otimes_{\mathbb{Q}} \mathbb{C}$ admits a canonical Hodge decomposition $\bigoplus_{p+q=w} V^{p,q}$ with $\dim_{\mathbb{C}} V^{p,q} = h^{p,q}$. Let

$$\mu_{\infty, V} : \mathbb{G}_m(\mathbb{C}) \to \text{GL}(V_{\mathbb{C}})$$

be the cocharacter acting with weight $-p$ on $V^{p,q}$.

The Mumford-Tate group of M is the minimal (connected) \mathbb{Q}-algebraic subgroup $\text{MT}(M)$ of $\text{Gl}_\text{iso}(V, \psi)$ through which $\mu_{\infty, V}$ factors.
The Betti-Hodge realization and the Mumford-Tate group

Fix an embedding $K \hookrightarrow \mathbb{C}$. Let V denote the Betti (singular) cohomology of M with \mathbb{Q}-coefficients; then $\dim_{\mathbb{Q}} V = d$.

The duality $M \times M \to \mathbb{Q}(-w)$ induces a perfect bilinear pairing ψ on V. Let $\text{Gl}_\text{so}(V, \psi)$ be the associated group of symplectic (if w is odd) or orthogonal (if w is even) similitudes.

The space $V_\mathbb{C} = V \otimes_{\mathbb{Q}} \mathbb{C}$ admits a canonical Hodge decomposition $\bigoplus_{p+q=w} V^{p,q}$ with $\dim_{\mathbb{C}} V^{p,q} = h^{p,q}$. Let $\mu_{\infty, V} : \mathbb{G}_m(\mathbb{C}) \to \text{GL}(V_\mathbb{C})$ be the cocharacter acting with weight $-p$ on $V^{p,q}$.

The Mumford-Tate group of M is the minimal (connected) \mathbb{Q}-algebraic subgroup $\text{MT}(M)$ of $\text{Gl}_\text{so}(V, \psi)$ through which $\mu_{\infty, V}$ factors.
The Betti-Hodge realization and the Mumford-Tate group

Fix an embedding $K \hookrightarrow \mathbb{C}$. Let V denote the Betti (singular) cohomology of M with \mathbb{Q}-coefficients; then $\dim_{\mathbb{Q}} V = d$.

The duality $M \times M \to \mathbb{Q}(-w)$ induces a perfect bilinear pairing ψ on V. Let $\text{Gl}_0(V, \psi)$ be the associated group of symplectic (if w is odd) or orthogonal (if w is even) similitudes.

The space $V_\mathbb{C} = V \otimes_{\mathbb{Q}} \mathbb{C}$ admits a canonical *Hodge decomposition* $\bigoplus_{p+q=w} V^{p,q}$ with $\dim_{\mathbb{C}} V^{p,q} = h^{p,q}$. Let

$$\mu_{\infty, V} : \mathbb{G}_m(\mathbb{C}) \to \text{GL}(V_\mathbb{C})$$

be the cocharacter acting with weight $-p$ on $V^{p,q}$.

The *Mumford-Tate group* of M is the minimal (connected) \mathbb{Q}-algebraic subgroup $\text{MT}(M)$ of $\text{Gl}_0(V, \psi)$ through which $\mu_{\infty, V}$ factors.
The Betti-Hodge realization and the Mumford-Tate group

Fix an embedding $K \hookrightarrow \mathbb{C}$. Let V denote the Betti (singular) cohomology of M with \mathbb{Q}-coefficients; then $\dim_{\mathbb{Q}} V = d$.

The duality $M \times M \to \mathbb{Q}(-w)$ induces a perfect bilinear pairing ψ on V. Let $\text{Gl}_\text{iso}(V, \psi)$ be the associated group of symplectic (if w is odd) or orthogonal (if w is even) similitudes.

The space $V_{\mathbb{C}} = V \otimes_{\mathbb{Q}} \mathbb{C}$ admits a canonical Hodge decomposition $\bigoplus_{p+q=w} V^{p,q}$ with $\dim_{\mathbb{C}} V^{p,q} = h^{p,q}$. Let

$$\mu_{\infty, V} : \mathbb{G}_m(\mathbb{C}) \to \text{GL}(V_{\mathbb{C}})$$

be the cocharacter acting with weight $-p$ on $V^{p,q}$.

The Mumford-Tate group of M is the minimal (connected) \mathbb{Q}-algebraic subgroup $\text{MT}(M)$ of $\text{Gl}_\text{iso}(V, \psi)$ through which $\mu_{\infty, V}$ factors.
The Mumford-Tate group of M is the minimal (connected) \mathbb{Q}-algebraic subgroup $\text{MT}(M)$ of $\text{Glso}(V, \psi)$ through which μ_∞, V factors.

For n a positive integer for which wn is even, put $p = wn/2$ and

$$(V \otimes^n)^{p,p} := (V_{\mathbb{C}} \otimes^n)^{p,p} \cap V \otimes^n.$$

Then $\text{MT}(M)$ can also be characterized as the maximal subgroup of $\text{Glso}(V, \psi)$ fixing $(V \otimes^n)^{p,p}$ for all n.
Another characterization of the Mumford-Tate group

The *Mumford-Tate group* of M is the minimal (connected) \mathbb{Q}-algebraic subgroup $\text{MT}(M)$ of $\text{Glso}(V, \psi)$ through which μ_∞, V factors. For n a positive integer for which wn is even, put $p = wn/2$ and

$$ (V \otimes^n)^{p,p} := (V_C \otimes^n)^{p,p} \cap V \otimes^n. $$

Then $\text{MT}(M)$ can also be characterized as the maximal subgroup of $\text{Glso}(V, \psi)$ fixing $(V \otimes^n)^{p,p}$ for all n.
Under the Hodge conjecture\(^2\), \((V \otimes n)^{p,p}\) is spanned by the Chern classes of algebraic cycles defined over \(\overline{K}\). We thus have an action of the absolute Galois group \(G_K\) on \((V \otimes n)^{p,p}\).

The **motivic Galois group** \(\text{Gal}(M)\) is the subgroup of \(g \in \text{Glso}(V, \psi)\) for which there exists \(\tau = \tau(g) \in G_K\) such that the actions of \(g\) and \(\tau\) on \((V \otimes n)^{p,p}\) coincide for all \(n\). By construction, we have an exact sequence

\[1 \to \text{Gal}(M)^{\circ} = \text{MT}(M) \to \text{Gal}(M) \to \text{Gal}_{L/K} \to 1 \]

of algebraic groups over \(\mathbb{Q}\), where \(L\) is some finite extension of \(K\). (Here and throughout, \(G^{\circ}\) denotes the maximal connected subgroup of \(G\).)

\(^2\)One can make unconditional definitions using André’s *motivated Hodge cycles* [A].
The motivic Galois group

Under the Hodge conjecture\(^2\), \((V \otimes^n)^{p,p}\) is spanned by the Chern classes of algebraic cycles defined over \(\bar{K}\). We thus have an action of the absolute Galois group \(G_K\) on \((V \otimes^n)^{p,p}\).

The *motivic Galois group* \(\text{Gal}(M)\) is the subgroup of \(g \in \text{Gl}_\text{iso}(V, \psi)\) for which there exists \(\tau = \tau(g) \in G_K\) such that the actions of \(g\) and \(\tau\) on \((V \otimes^n)^{p,p}\) coincide for all \(n\). By construction, we have an exact sequence

\[
1 \to \text{Gal}(M)^\circ = \text{MT}(M) \to \text{Gal}(M) \to \text{Gal}_{L/K} \to 1
\]

of algebraic groups over \(\mathbb{Q}\), where \(L\) is some finite extension of \(K\). (Here and throughout, \(G^\circ\) denotes the maximal connected subgroup of \(G\).)

\(^2\)One can make unconditional definitions using André’s *motivated Hodge cycles* [A].
The Sato-Tate group

Define the *algebraic Sato-Tate group*

\[\text{AST}(M) = \text{Gal}(M) \cap \text{Glso}(V, \psi)^{\circ}; \]

note that \(\text{Glso}(V, \psi)^{\circ} \) equals \(\text{Sp}(V, \psi) \) or \(\text{SO}(V, \psi) \).

Again by construction, we have an exact sequence

\[1 \rightarrow \text{AST}(M)^{\circ} \rightarrow \text{AST}(M) \rightarrow \text{Gal}_{L/K} \rightarrow 1 \]

of algebraic groups over \(\mathbb{Q} \) (for the same \(L \)).

The *Sato-Tate group* \(\text{ST}(A) \) is a maximal compact subgroup of \(\text{AST}(M)_{\mathbb{C}} \).

We have an exact sequence of compact Lie groups

\[1 \rightarrow \text{ST}(M)^{\circ} \rightarrow \text{ST}(M) \rightarrow \text{Gal}_{L/K} \rightarrow 1. \]
The Sato-Tate group

Define the *algebraic Sato-Tate group*

\[
\text{AST}(M) = \text{Gal}(M) \cap \text{Gl}_\text{so}(V, \psi)^\circ;
\]

note that \(\text{Gl}_\text{so}(V, \psi)^\circ\) equals \(\text{Sp}(V, \psi)\) or \(\text{SO}(V, \psi)\).

Again by construction, we have an exact sequence

\[
1 \to \text{AST}(M)^\circ \to \text{AST}(M) \to \text{Gal}_{L/K} \to 1
\]

of algebraic groups over \(\mathbb{Q}\) (for the same \(L\)).

The *Sato-Tate group* \(\text{ST}(A)\) is a maximal compact subgroup of \(\text{AST}(M)_\mathbb{C}\).

We have an exact sequence of compact Lie groups

\[
1 \to \text{ST}(M)^\circ \to \text{ST}(M) \to \text{Gal}_{L/K} \to 1.
\]
The Sato-Tate group

Define the *algebraic Sato-Tate group*

\[
AST(M) = \text{Gal}(M) \cap \text{Gliso}(V, \psi)^\circ;
\]

note that \(\text{Gliso}(V, \psi)^\circ\) equals \(\text{Sp}(V, \psi)\) or \(\text{SO}(V, \psi)\).

Again by construction, we have an exact sequence

\[
1 \to AST(M)^\circ \to AST(M) \to \text{Gal}_{L/K} \to 1
\]

of algebraic groups over \(\mathbb{Q}\) (for the same \(L\)).

The *Sato-Tate group* \(\text{ST}(A)\) is a maximal compact subgroup of \(AST(M)_\mathbb{C}\).

We have an exact sequence of compact Lie groups

\[
1 \to \text{ST}(M)^\circ \to \text{ST}(M) \to \text{Gal}_{L/K} \to 1.
\]
Contents

1. Overview

2. Construction of the Sato-Tate group [S, BK1, BK2]

3. Example in weight 1: abelian varieties [FKRS]

4. Example in weight 2: K3 surfaces [?]

5. Example in weight 3: hypergeometric motives [FKS]

6. References
Example in weight 1: abelian varieties [FKRS]

Endomorphisms and Sato-Tate groups

Put $M = H^1(A)$ for A/K an abelian variety of dimension $g > 0$. Then

$$\text{Gl}_0(V, \psi) \cong \text{GSp}(2g) \quad \text{and} \quad (V \otimes 2)^{1,1} \cong \text{End}(A_K)_\mathbb{Q}.$$

In many cases (e.g., when $g \leq 3$), the map

$$((V \otimes 2)^{1,1})^n \to (V \otimes 2^n)^{n,n}$$

is surjective, so $\text{AST}(M)$ and $\text{ST}(M)$ are determined entirely by endomorphisms. In these cases, the exact sequence

$$1 \to \text{ST}(M)^\circ \to \text{ST}(M) \to \text{Gal}_{L/K} \to 1$$

implies that L is the minimal field for which $\text{End}(A_L) = \text{End}(A_K)$ (otherwise L may be larger).
Put $M = H^1(A)$ for A/K an abelian variety of dimension $g > 0$. Then

$$\text{Glc}(V, \psi) \cong \text{GSp}(2g) \quad \text{and} \quad (V \otimes 2)^{1,1} \cong \text{End}(A_K)_{\mathbb{Q}}.$$

In many cases (e.g., when $g \leq 3$), the map

$$((V \otimes 2)^{1,1}) \otimes n \to (V \otimes 2^n)^{n,n}$$

is surjective, so $\text{AST}(M)$ and $\text{ST}(M)$ are determined entirely by endomorphisms. In these cases, the exact sequence

$$1 \to \text{ST}(M)^{\circ} \to \text{ST}(M) \to \text{Gal}_{L/K} \to 1$$

implies that L is the minimal field for which $\text{End}(A_L) = \text{End}(A_K)$ (otherwise L may be larger).
Warmup: elliptic curves

If $A = E$ is of dimension $g = 1$, then

$$\text{Glso}(V, \psi) \cong \text{GL}(2) \quad \text{and} \quad (V \otimes^2)^{1,1} \cong \text{End}(E_K)_\mathbb{Q}.$$

- If E has no CM, then $\text{AST}(M) = \text{SL}(2)$ and $\text{ST}(M) = \text{SU}(2)$.
- If E has CM in K, then $\text{AST}(M)$ is the norm torus for F/\mathbb{Q}, where F is the field of complex multiplication, and $\text{ST}(M) = \text{SO}(2, \mathbb{R})$.
- If E has CM in an overfield L/K, then $\text{ST}(M)$ is the normalizer of $\text{ST}(M_L) = \text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$.

This illustrates a general phenomenon: for fixed parameters, there are generally infinitely many options for the \mathbb{Q}-algebraic group $\text{AST}(M)$. By contrast, $\text{ST}(M)$ depends only on $\text{AST}(M)_\mathbb{R}$, for which there are only finitely many options.
Warmup: elliptic curves

If $A = E$ is of dimension $g = 1$, then

$$\text{Glso}(V, \psi) \cong \text{GL}(2) \quad \text{and} \quad (V \otimes^2)^{1,1} \cong \text{End}(E_K)_{\mathbb{Q}}.$$

- If E has no CM, then $\text{AST}(M) = \text{SL}(2)$ and $\text{ST}(M) = \text{SU}(2)$.
- If E has CM in K, then $\text{AST}(M)$ is the norm torus for F/\mathbb{Q}, where F is the field of complex multiplication, and $\text{ST}(M) = \text{SO}(2, \mathbb{R})$.
- If E has CM in an overfield L/K, then $\text{ST}(M)$ is the normalizer of $\text{ST}(M_L) = \text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$.

This illustrates a general phenomenon: for fixed parameters, there are generally infinitely many options for the \mathbb{Q}-algebraic group $\text{AST}(M)$. By contrast, $\text{ST}(M)$ depends only on $\text{AST}(M)_{\mathbb{R}}$, for which there are only finitely many options.
Warmup: elliptic curves

If $A = E$ is of dimension $g = 1$, then

$$\text{Glso}(V, \psi) \cong \text{GL}(2) \quad \text{and} \quad (V \otimes^2)^{1,1} \cong \text{End}(E_K)_{\mathbb{Q}}.$$

- If E has no CM, then $\text{AST}(M) = \text{SL}(2)$ and $\text{ST}(M) = \text{SU}(2)$.
- If E has CM in K, then $\text{AST}(M)$ is the norm torus for F/\mathbb{Q}, where F is the field of complex multiplication, and $\text{ST}(M) = \text{SO}(2, \mathbb{R})$.
- If E has CM in an overfield L/K, then $\text{ST}(M)$ is the normalizer of $\text{ST}(M_L) = \text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$.

This illustrates a general phenomenon: for fixed parameters, there are generally infinitely many options for the \mathbb{Q}-algebraic group $\text{AST}(M)$. By contrast, $\text{ST}(M)$ depends only on $\text{AST}(M)_{\mathbb{R}}$, for which there are only finitely many options.
Warmup: elliptic curves

If $A = E$ is of dimension $g = 1$, then

$$\text{Gl}_\text{so}(V, \psi) \cong \text{GL}(2) \quad \text{and} \quad (V \otimes^2)^{1,1} \cong \text{End}(E_K)_{\mathbb{Q}}.$$

- If E has no CM, then $\text{AST}(M) = \text{SL}(2)$ and $\text{ST}(M) = \text{SU}(2)$.
- If E has CM in K, then $\text{AST}(M)$ is the norm torus for F/\mathbb{Q}, where F is the field of complex multiplication, and $\text{ST}(M) = \text{SO}(2, \mathbb{R})$.
- If E has CM in an overfield L/K, then $\text{ST}(M)$ is the normalizer of $\text{ST}(M_L) = \text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$.

This illustrates a general phenomenon: for fixed parameters, there are generally infinitely many options for the \mathbb{Q}-algebraic group $\text{AST}(M)$. By contrast, $\text{ST}(M)$ depends only on $\text{AST}(M)_\mathbb{R}$, for which there are only finitely many options.
Warmup: elliptic curves

If $A = E$ is of dimension $g = 1$, then

$$\text{Glso}(V, \psi) \cong \text{GL}(2) \quad \text{and} \quad (V \otimes^2)^{1,1} \cong \text{End}(E_K^*)_\mathbb{Q}.$$

- If E has no CM, then $\text{AST}(M) = \text{SL}(2)$ and $\text{ST}(M) = \text{SU}(2)$.
- If E has CM in K, then $\text{AST}(M)$ is the norm torus for F/\mathbb{Q}, where F is the field of complex multiplication, and $\text{ST}(M) = \text{SO}(2, \mathbb{R})$.
- If E has CM in an overfield L/K, then $\text{ST}(M)$ is the normalizer of $\text{ST}(M_L) = \text{SO}(2, \mathbb{R})$ in $\text{SU}(2)$.

This illustrates a general phenomenon: for fixed parameters, there are generally infinitely many options for the \mathbb{Q}-algebraic group $\text{AST}(M)$. By contrast, $\text{ST}(M)$ depends only on $\text{AST}(M)_\mathbb{R}$, for which there are only finitely many options.
Properties of Sato-Tate groups

For M as above, the group $\text{ST}(M)$ satisfies the following conditions.

1. **(ST1)** The group $\text{ST}(M)$ is a closed subgroup of $\text{USp}(2g)$. (Equality is the generic case.)

2. **(ST2)** The connected group $\text{ST}(M)^\circ$ is the closure of the subgroup generated by **Hodge circles**: images of cocharacters $\theta : \text{U}(1) \rightarrow \text{ST}(M)^\circ$ with weight $p - q$ of multiplicity $h^{p,q}$.

3. **(ST3)** For each connected component C of $\text{ST}(M)$ and each irreducible character χ of $\text{GL}(2g, \mathbb{C})$, the average of χ on C is an integer.

Up to conjugation within $\text{USp}(2g)$, these conditions restrict $\text{ST}(M)$ to a finite set of options.
Properties of Sato-Tate groups

For M as above, the group $ST(M)$ satisfies the following conditions.

1. **(ST1)** The group $ST(M)$ is a closed subgroup of $USp(2g)$. (Equality is the generic case.)

2. **(ST2)** The connected group $ST(M)^\circ$ is the closure of the subgroup generated by **Hodge circles**: images of cocharacters $\theta : U(1) \to ST(M)^\circ$ with weight $p - q$ of multiplicity $h^{p,q}$.

3. **(ST3)** For each connected component C of $ST(M)$ and each irreducible character χ of $GL(2g, \mathbb{C})$, the average of χ on C is an integer.

Up to conjugation within $USp(2g)$, these conditions restrict $ST(M)$ to a finite set of options.
Properties of Sato-Tate groups

For M as above, the group $\text{ST}(M)$ satisfies the following conditions.

- **(ST1)** The group $\text{ST}(M)$ is a closed subgroup of $\text{USp}(2g)$. (Equality is the generic case.)

- **(ST2)** The connected group $\text{ST}(M)^\circ$ is the closure of the subgroup generated by *Hodge circles*: images of cocharacters $\theta : U(1) \to \text{ST}(M)^\circ$ with weight $p - q$ of multiplicity $h^{p,q}$.

- **(ST3)** For each connected component C of $\text{ST}(M)$ and each irreducible character χ of $\text{GL}(2g, \mathbb{C})$, the average of χ on C is an integer.

Up to conjugation within $\text{USp}(2g)$, these conditions restrict $\text{ST}(M)$ to a finite set of options.
Properties of Sato-Tate groups

For M as above, the group $\text{ST}(M)$ satisfies the following conditions.

- (ST1) The group $\text{ST}(M)$ is a closed subgroup of $\text{USp}(2g)$. (Equality is the generic case.)

- (ST2) The connected group $\text{ST}(M)^\circ$ is the closure of the subgroup generated by Hodge circles: images of cocharacters $\theta : U(1) \to \text{ST}(M)^\circ$ with weight $p - q$ of multiplicity $h^{p,q}$.

- (ST3) For each connected component C of $\text{ST}(M)$ and each irreducible character χ of $\text{GL}(2g, \mathbb{C})$, the average of χ on C is an integer.

Up to conjugation within $\text{USp}(2g)$, these conditions restrict $\text{ST}(M)$ to a finite set of options.
Properties of Sato-Tate groups

For M as above, the group $\text{ST}(M)$ satisfies the following conditions.

- (ST1) The group $\text{ST}(M)$ is a closed subgroup of $\text{USp}(2g)$. (Equality is the generic case.)

- (ST2) The connected group $\text{ST}(M)^\circ$ is the closure of the subgroup generated by Hodge circles: images of cocharacters $\theta : \text{U}(1) \to \text{ST}(M)^\circ$ with weight $p - q$ of multiplicity $h^{p,q}$.

- (ST3) For each connected component C of $\text{ST}(M)$ and each irreducible character χ of $\text{GL}(2g, \mathbb{C})$, the average of χ on C is an integer.

Up to conjugation within $\text{USp}(2g)$, these conditions restrict $\text{ST}(M)$ to a finite set of options.
Mumford-Tate groups of abelian surfaces

Theorem (well-known)

For \(g = 2 \), there are exactly 6 conjugacy classes of subgroups of USp(4) which can occur as \(\text{ST}(A)^\circ \), isomorphic to

\[
\text{U}(1), \text{SU}(2), \text{U}(1) \times \text{U}(1), \text{U}(1) \times \text{U}(2), \text{U}(2) \times \text{U}(2), \text{USp}(4).
\]

This list corresponds to the possibilities for \(\text{End}(A_{\overline{K}})^{\mathbb{R}} \):

\[
\mathbb{M}_2(\mathbb{C}), \mathbb{M}_2(\mathbb{R}), \mathbb{C} \times \mathbb{C}, \mathbb{C} \times \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R}.
\]

Consequently, the passage from \(A \) to \(\text{ST}(A)^\circ \) conflates distinct geometric behaviors. For instance, a simple CM abelian fourfold gives the same group \(\text{U}(1) \times \text{U}(1) \) as the product of two nonisogenous CM elliptic curves, as in both cases \(\text{End}(A_{\overline{K}})^{\mathbb{R}} \cong \mathbb{C} \times \mathbb{C} \).
Mumford-Tate groups of abelian surfaces

Theorem (well-known)

For \(g = 2 \), there are exactly 6 conjugacy classes of subgroups of \(\text{USp}(4) \) which can occur as \(\text{ST}(A)^\circ \), isomorphic to

\[
\text{U}(1), \text{SU}(2), \text{U}(1) \times \text{U}(1), \text{U}(1) \times \text{U}(2), \text{U}(2) \times \text{U}(2), \text{USp}(4).
\]

This list corresponds to the possibilities for \(\text{End}(A_{\overline{K}})_{\mathbb{R}} \):

\[
\text{M}_2(\mathbb{C}), \text{M}_2(\mathbb{R}), \mathbb{C} \times \mathbb{C}, \mathbb{C} \times \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R}.
\]

Consequently, the passage from \(A \) to \(\text{ST}(A)^\circ \) conflates distinct geometric behaviors. For instance, a simple CM abelian fourfold gives the same group \(\text{U}(1) \times \text{U}(1) \) as the product of two nonisogenous CM elliptic curves, as in both cases \(\text{End}(A_{\overline{K}})_{\mathbb{R}} \cong \mathbb{C} \times \mathbb{C} \).
Mumford-Tate groups of abelian surfaces

Theorem (well-known)

For $g = 2$, there are exactly 6 conjugacy classes of subgroups of $\text{USp}(4)$ which can occur as $\text{ST}(A)^\circ$, isomorphic to

$$U(1), \text{SU}(2), U(1) \times U(1), U(1) \times U(2), U(2) \times U(2), \text{USp}(4).$$

This list corresponds to the possibilities for $\text{End}(A_{\overline{K}})_{\mathbb{R}}$:

$$\text{M}_2(\mathbb{C}), \text{M}_2(\mathbb{R}), \mathbb{C} \times \mathbb{C}, \mathbb{C} \times \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R}.$$

Consequently, the passage from A to $\text{ST}(A)^\circ$ conflates distinct geometric behaviors. For instance, a simple CM abelian fourfold gives the same group $U(1) \times U(1)$ as the product of two nonisogenous CM elliptic curves, as in both cases $\text{End}(A_{\overline{K}})_{\mathbb{R}} \cong \mathbb{C} \times \mathbb{C}$.
Sato-Tate groups of abelian surfaces

Theorem ([FKRS])

Take $g = 2$.

(a) There are 55 conjugacy classes of subgroups of $\text{USp}(2g)$ satisfying $(ST1)$, $(ST2)$, $(ST3)$.

(b) Of these, exactly 52 are realized as $\text{ST}(M)$ for suitable A. The generic case $\text{ST}(M) = \text{USp}(4)$ occurs iff $\text{End}(A_K) = \mathbb{Z}$.

(c) Of these, exactly 34 are realized with $K = \mathbb{Q}$.

For illustrated examples, see

http://math.mit.edu/~drew/g2SatoTateDistributions.html.
Sato-Tate groups of abelian surfaces

Theorem ([FKRS])

Take $g = 2$.

(a) There are 55 conjugacy classes of subgroups of $\text{USp}(2g)$ satisfying (ST1), (ST2), (ST3).

(b) Of these, exactly 52 are realized as $\text{ST}(M)$ for suitable A. The generic case $\text{ST}(M) = \text{USp}(4)$ occurs iff $\text{End}(A_K) = \mathbb{Z}$.

(c) Of these, exactly 34 are realized with $K = \mathbb{Q}$.

For illustrated examples, see

http://math.mit.edu/~drew/g2SatoTateDistributions.html.
Sato-Tate groups of abelian surfaces

Theorem ([FKRS])

Take \(g = 2 \).

(a) There are 55 conjugacy classes of subgroups of \(\text{USp}(2g) \) satisfying (ST1), (ST2), (ST3).

(b) Of these, exactly 52 are realized as \(\text{ST}(M) \) for suitable \(A \). The generic case \(\text{ST}(M) = \text{USp}(4) \) occurs iff \(\text{End}(A_K) = \mathbb{Z} \).

(c) Of these, exactly 34 are realized with \(K = \mathbb{Q} \).

For illustrated examples, see

http://math.mit.edu/~drew/g2SatoTateDistributions.html.
Sato-Tate groups of abelian surfaces

Theorem ([FKRS])

Take $g = 2$.

(a) There are 55 conjugacy classes of subgroups of $\text{USp}(2g)$ satisfying (ST1), (ST2), (ST3).

(b) Of these, exactly 52 are realized as $\text{ST}(M)$ for suitable A. The generic case $\text{ST}(M) = \text{USp}(4)$ occurs iff $\text{End}(A_K) = \mathbb{Z}$.

(c) Of these, exactly 34 are realized with $K = \mathbb{Q}$.

For illustrated examples, see

http://math.mit.edu/~drew/g2SatoTateDistributions.html.
Sato-Tate groups of abelian surfaces

Theorem ([FKRS])

Take $g = 2$.

(a) There are 55 conjugacy classes of subgroups of $\text{USp}(2g)$ satisfying (ST1), (ST2), (ST3).

(b) Of these, exactly 52 are realized as $\text{ST}(M)$ for suitable A. The generic case $\text{ST}(M) = \text{USp}(4)$ occurs iff $\text{End}(A_{\overline{K}}) = \mathbb{Z}$.

(c) Of these, exactly 34 are realized with $K = \mathbb{Q}$.

For illustrated examples, see

http://math.mit.edu/~drew/g2SatoTateDistributions.html.
Consequences for abelian surfaces

For $g = 2$, we read off some arithmetic consequences.

Corollary (improvement of a result of Silverberg)

The minimal field L/K with $\text{End}(A_L) = \text{End}(A_K)$ has degree dividing 48. This bound is realized even for $K = \mathbb{Q}$, e.g., by the Jacobian of $y^2 = x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$.

Corollary

The density of prime ideals with zero Frobenius trace exists and belongs to

$$\left\{0, \frac{1}{6}, \frac{1}{4}, \frac{1}{8}, \frac{1}{24}, \frac{1}{2}, \frac{1}{12}, \frac{1}{8}, \frac{1}{4}, \frac{1}{24}, \frac{1}{16}, \frac{1}{8}\right\}.$$

All of these cases are realized, e.g., $7/8$ by $y^2 = x^5 + 2x$. (Only the case $3/8$ cannot occur for $K = \mathbb{Q}$.)
Consequences for abelian surfaces

For $g = 2$, we read off some arithmetic consequences.

Corollary (improvement of a result of Silverberg)

The minimal field L/K with $\text{End}(A_L) = \text{End}(A_K)$ has degree dividing 48. This bound is realized even for $K = \mathbb{Q}$, e.g., by the Jacobian of $y^2 = x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$.

Corollary

The density of prime ideals with zero Frobenius trace exists and belongs to

$$\left\{ 0, \frac{1}{6}, \frac{1}{4}, \frac{3}{8}, \frac{11}{24}, \frac{1}{2}, \frac{7}{12}, \frac{1}{8}, \frac{3}{4}, \frac{19}{24}, \frac{13}{16}, \frac{7}{8} \right\}.$$

All of these cases are realized, e.g, $7/8$ by $y^2 = x^5 + 2x$. (Only the case $3/8$ cannot occur for $K = \mathbb{Q}$.)
Consequences for abelian surfaces

For \(g = 2 \), we read off some arithmetic consequences.

Corollary (improvement of a result of Silverberg)

The minimal field \(L/K \) with \(\text{End}(A_L) = \text{End}(A_K) \) has degree dividing 48. This bound is realized even for \(K = \mathbb{Q} \), e.g., by the Jacobian of
\[
y^2 = x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1.
\]

Corollary

The density of prime ideals with zero Frobenius trace exists and belongs to
\[
\left\{ 0, \frac{1}{6}, \frac{3}{4}, \frac{11}{8}, \frac{1}{24}, \frac{1}{2}, \frac{1}{12}, \frac{5}{8}, \frac{3}{4}, \frac{19}{24}, \frac{13}{16}, \frac{7}{8} \right\}.
\]

All of these cases are realized, e.g, \(7/8 \) by \(y^2 = x^5 + 2x \). (Only the case \(3/8 \) cannot occur for \(K = \mathbb{Q} \).)
Higher-dimensional abelian varieties

For $g \geq 3$, it seems difficult to get a complete classification. Most of the cases occur when $\text{ST}(M)^{\circ}$ is a one-dimensional torus; these cases occur for twisted powers of CM elliptic curves.

By contrast, suppose that M is discrete in the sense of Gross’s lecture, i.e., the centralizer of $\text{ST}(M)^{\circ}$ in $\text{USp}(2g)$ is finite. Then one gets a finite list of options even without $(ST3)$. One only needs to describe the subgroups of the group $\text{Out} (\text{ST}(M)^{\circ})$; that group consists (approximately) of automorphisms of the Dynkin diagram.
Higher-dimensional abelian varieties

For $g \geq 3$, it seems difficult to get a complete classification. Most of the cases occur when $\text{ST}(M)^\circ$ is a one-dimensional torus; these cases occur for twisted powers of CM elliptic curves.

By contrast, suppose that M is discrete in the sense of Gross's lecture, i.e., the centralizer of $\text{ST}(M)^\circ$ in $\text{USp}(2g)$ is finite. Then one gets a finite list of options even without $(ST3)$. One only needs to describe the subgroups of the group $\text{Out}(\text{ST}(M)^\circ)$; that group consists (approximately) of automorphisms of the Dynkin diagram.
Contents

1 Overview

2 Construction of the Sato-Tate group [S, BK1, BK2]

3 Example in weight 1: abelian varieties [FKRS]

4 Example in weight 2: K3 surfaces [?

5 Example in weight 3: hypergeometric motives [FKS]

6 References
Setup

Take $M = H^2(X)$ for X/K a K3 surface.

Recall that to compute $\text{ST}(M)$, we have to look at $(V \otimes n)^{p,p}$ whenever $n > 0$, nw is even, and $p = nw/2$. For $n = 1$, this is $\text{NS}(X_K)_\mathbb{Q}$ by the Lefschetz $(1,1)$ theorem.

Put

$$\rho = \text{rank } \text{NS}(X), \quad \bar{\rho} = \text{rank } \text{NS}(X_K).$$

Then

$$\text{ST}(M) \subseteq \text{SO}(22 - \rho), \quad \text{ST}(M)^\circ \subseteq \text{SO}(22 - \bar{\rho})$$

and there is a canonical surjection

$$\text{ST}(M)/\text{ST}(M)^\circ \to \text{image}(G_K \to \text{Aut}(\text{NS}(X_K))).$$
Setup

Take $M = H^2(X)$ for X/K a K3 surface.

Recall that to compute $\text{ST}(M)$, we have to look at $(V \otimes n)^{p,p}$ whenever $n > 0$, nw is even, and $p = nw/2$. For $n = 1$, this is $\text{NS}(X_K)^\mathbb{Q}$ by the Lefschetz $(1,1)$ theorem.

Put

$$\rho = \text{rank } \text{NS}(X), \quad \bar{\rho} = \text{rank } \text{NS}(X_K).$$

Then

$$\text{ST}(M) \subseteq \text{SO}(22 - \rho), \quad \text{ST}(M)^\circ \subseteq \text{SO}(22 - \bar{\rho})$$

and there is a canonical surjection

$$\text{ST}(M)/\text{ST}(M)^\circ \to \text{image}(G_K \to \text{Aut}(\text{NS}(X_K))).$$
Setup

Take $M = H^2(X)$ for X/K a K3 surface.

Recall that to compute $\text{ST}(M)$, we have to look at $(V^\otimes n)^{p,p}$ whenever $n > 0$, nw is even, and $p = nw/2$. For $n = 1$, this is $\text{NS}(X_K)^\mathbb{Q}$ by the Lefschetz $(1,1)$ theorem.

Put

$$\rho = \text{rank} \text{NS}(X), \quad \bar{\rho} = \text{rank} \text{NS}(X_K).$$

Then

$$\text{ST}(M) \subseteq \text{SO}(22 - \rho), \quad \text{ST}(M)^\circ \subseteq \text{SO}(22 - \bar{\rho})$$

and there is a canonical surjection

$$\text{ST}(M)/\text{ST}(M)^\circ \to \text{image}(G_K \to \text{Aut}(\text{NS}(X_K))).$$
Setup

Take $M = H^2(X)$ for X/K a K3 surface.

Recall that to compute $\text{ST}(M)$, we have to look at $(V \otimes n)^{p,p}$ whenever $n > 0$, nw is even, and $p = nw/2$. For $n = 1$, this is $\text{NS}(X_K)^\mathbb{Q}$ by the Lefschetz $(1,1)$ theorem.

Put

$$\rho = \text{rank } \text{NS}(X), \quad \bar{\rho} = \text{rank } \text{NS}(X_K).$$

Then

$$\text{ST}(M) \subseteq \text{SO}(22 - \rho), \quad \text{ST}(M)\circ \subseteq \text{SO}(22 - \bar{\rho})$$

and there is a canonical surjection

$$\text{ST}(M)/\text{ST}(M)\circ \rightarrow \text{image}(G_K \rightarrow \text{Aut}(\text{NS}(X_K))).$$
Setup

Take $M = H^2(X)$ for X/K a K3 surface.

Recall that to compute $\text{ST}(M)$, we have to look at $(V \otimes n)^{p,p}$ whenever $n > 0$, nw is even, and $p = nw/2$. For $n = 1$, this is $\text{NS}(X_{\overline{K}})^{\mathbb{Q}}$ by the Lefschetz $(1,1)$ theorem.

Put

$$\rho = \text{rank NS}(X), \quad \overline{\rho} = \text{rank NS}(X_{\overline{K}}).$$

Then

$$\text{ST}(M) \subseteq \text{SO}(22 - \rho), \quad \text{ST}(M)^{\circ} \subseteq \text{SO}(22 - \overline{\rho})$$

and there is a canonical surjection

$$\text{ST}(M)/ \text{ST}(M)^{\circ} \to \text{image}(G_{\mathbb{K}} \to \text{Aut}(\text{NS}(X_{\overline{K}}))).$$
Mumford-Tate groups are easy!

As usual, $\text{ST}(M)^\circ$ is determined by $\text{MT}(M)$. Luckily, K3 surfaces do not exhibit the subtleties associated to Mumford-Tate groups of abelian varieties: $\text{ST}(M)^\circ$ is “as large as possible” (ultimately because $h^{2,0} = 1$).

Theorem (Zarhin, 1983; [Z])

Let V_{tr} be the orthogonal complement of $V^{1,1}$ in V.

(a) The \mathbb{Q}-algebra $E = \text{End}_{\text{MT}(M)}(V_{tr})$ is either a totally real number field or a CM field. Let E_0 be the maximal totally real subfield of E; we may view V_{tr} as an E-vector space and ψ as a Hermitian pairing.

(b) If E is totally real, then $\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{SO}(V_{tr}, \psi)$.

(c) If E is CM, then $\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{U}(V_{tr}, \psi)$.

Aside: the Mumford-Tate conjecture holds for X (Tankeev, 1995).
Mumford-Tate groups are easy!

As usual, \(\text{ST}(M) \) is determined by \(\text{MT}(M) \). Luckily, K3 surfaces do not exhibit the subtleties associated to Mumford-Tate groups of abelian varieties: \(\text{ST}(M) \) is “as large as possible” (ultimately because \(h^{2,0} = 1 \)).

Theorem (Zarhin, 1983; [Z])

Let \(V_{tr} \) be the orthogonal complement of \(V^{1,1} \) in \(V \).

(a) The \(\mathbb{Q} \)-algebra \(E = \text{End}_{\text{MT}(M)}(V_{tr}) \) is either a totally real number field or a CM field. Let \(E_0 \) be the maximal totally real subfield of \(E \); we may view \(V_{tr} \) as an \(E \)-vector space and \(\psi \) as a Hermitian pairing.

(b) If \(E \) is totally real, then \(\text{AST}(M) = \text{Res}_{\mathbb{Q}}^E \text{SO}(V_{tr}, \psi) \).

(c) If \(E \) is CM, then \(\text{AST}(M) = \text{Res}_{\mathbb{Q}}^E \text{U}(V_{tr}, \psi) \).

Aside: the Mumford-Tate conjecture holds for \(X \) (Tankeev, 1995).
Mumford-Tate groups are easy!

As usual, $\text{ST}(M)^\circ$ is determined by $\text{MT}(M)$. Luckily, K3 surfaces do not exhibit the subtleties associated to Mumford-Tate groups of abelian varieties: $\text{ST}(M)^\circ$ is “as large as possible” (ultimately because $h^{2,0} = 1$).

Theorem (Zarhin, 1983; [Z])

Let V_{tr} be the orthogonal complement of $V^{1,1}$ in V.

(a) The \mathbb{Q}-algebra $E = \text{End}_{\text{MT}(M)}(V_{\text{tr}})$ is either a totally real number field or a CM field. Let E_0 be the maximal totally real subfield of E; we may view V_{tr} as an E-vector space and ψ as a Hermitian pairing.

(b) If E is totally real, then $\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{SO}(V_{\text{tr}}, \psi)$.

(c) If E is CM, then $\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{U}(V_{\text{tr}}, \psi)$.

Aside: the Mumford-Tate conjecture holds for X (Tankeev, 1995).
Mumford-Tate groups are easy!

As usual, $\text{ST}(M)^\circ$ is determined by $\text{MT}(M)$. Luckily, K3 surfaces do not exhibit the subtleties associated to Mumford-Tate groups of abelian varieties: $\text{ST}(M)^\circ$ is “as large as possible” (ultimately because $h^{2,0} = 1$).

Theorem (Zarhin, 1983; [Z])

Let V_{tr} be the orthogonal complement of $V^{1,1}$ in V.

(a) The \mathbb{Q}-algebra $E = \text{End}_{\text{MT}(M)}(V_{\text{tr}})$ is either a totally real number field or a CM field. Let E_0 be the maximal totally real subfield of E; we may view V_{tr} as an E-vector space and ψ as a Hermitian pairing.

(b) If E is totally real, then $\text{AST}(M)^\circ = \text{Res}_E^\mathbb{Q} \text{SO}(V_{\text{tr}}, \psi)$.

(c) If E is CM, then $\text{AST}(M)^\circ = \text{Res}_E^\mathbb{Q} \text{U}(V_{\text{tr}}, \psi)$.

Aside: the Mumford-Tate conjecture holds for X (Tankeev, 1995).
Mumford-Tate groups are easy!

As usual, $\text{ST}(M)^\circ$ is determined by $\text{MT}(M)$. Luckily, K3 surfaces do not exhibit the subtleties associated to Mumford-Tate groups of abelian varieties: $\text{ST}(M)^\circ$ is “as large as possible” (ultimately because $h^{2,0} = 1$).

Theorem (Zarhin, 1983; [Z])

Let V_{tr} be the orthogonal complement of $V^{1,1}$ in V.

(a) The \mathbb{Q}-algebra $E = \text{End}_{\text{MT}(M)}(V_{tr})$ is either a totally real number field or a CM field. Let E_0 be the maximal totally real subfield of E; we may view V_{tr} as an E-vector space and ψ as a Hermitian pairing.

(b) If E is totally real, then $\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{SO}(V_{tr}, \psi)$.

(c) If E is CM, then $\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{U}(V_{tr}, \psi)$.

Aside: the Mumford-Tate conjecture holds for X (Tankeev, 1995).
Mumford-Tate groups are easy!

As usual, \(\text{ST}(M)^\circ \) is determined by \(\text{MT}(M) \). Luckily, K3 surfaces do not exhibit the subtleties associated to Mumford-Tate groups of abelian varieties: \(\text{ST}(M)^\circ \) is “as large as possible” (ultimately because \(h^{2,0} = 1 \)).

Theorem (Zarhin, 1983; [Z])

Let \(V_{tr} \) be the orthogonal complement of \(V^{1,1} \) in \(V \).

(a) The \(\mathbb{Q} \)-algebra \(E = \text{End}_{\text{MT}(M)}(V_{tr}) \) is either a totally real number field or a CM field. Let \(E_0 \) be the maximal totally real subfield of \(E \); we may view \(V_{tr} \) as an \(E \)-vector space and \(\psi \) as a Hermitian pairing.

(b) If \(E \) is totally real, then \(\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{SO}(V_{tr}, \psi) \).

(c) If \(E \) is CM, then \(\text{AST}(M)^\circ = \text{Res}^E_{\mathbb{Q}} \text{U}(V_{tr}, \psi) \).

Aside: the Mumford-Tate conjecture holds for \(X \) (Tankeev, 1995).
Zarhin’s theorem for Kummer surfaces

For X the Kummer of an abelian surface A, we have

$$\mathrm{ST}(H^2(X))^{\circ} = \mathrm{ST}(H^1(A))^{\circ}/\{\pm 1\}, \quad \mathrm{ST}(H^2(X)) = \mathrm{ST}(H^1(A))/\{\pm 1\}.$$

How does this relate to Zarhin’s theorem?

<table>
<thead>
<tr>
<th>$\mathrm{ST}(H^1(A))^{\circ}$</th>
<th>$\mathrm{ST}(H^2(X))^{\circ}$</th>
<th>$\bar{\rho}$</th>
<th>E_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)$</td>
<td>$U(1)$</td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td>$SU(2)$</td>
<td>$SO(3)$</td>
<td>19</td>
<td>R</td>
</tr>
<tr>
<td>$U(1) \times U(1)$</td>
<td>$U(1) \times U(1)$</td>
<td>18</td>
<td>$C \times C$</td>
</tr>
<tr>
<td>$U(1) \times SU(2)$</td>
<td>$U(2)$</td>
<td>18</td>
<td>C</td>
</tr>
<tr>
<td>$SU(2) \times SU(2)$</td>
<td>$SO(4)$</td>
<td>18</td>
<td>R</td>
</tr>
<tr>
<td>USp(4)</td>
<td>$SO(5)$</td>
<td>17</td>
<td>R</td>
</tr>
</tbody>
</table>

Exercise (open!)

Recover the classification of Sato-Tate groups of abelian surfaces. Do non-Kummer surfaces with $\bar{\rho} = 18$ account for the 3 missing groups?
Zarhin’s theorem for Kummer surfaces

For X the Kummer of an abelian surface A, we have

$$\text{ST}(H^2(X)) = \text{ST}(H^1(A)) / \{\pm 1\}, \quad \text{ST}(H^2(X)) = \text{ST}(H^1(A)) / \{\pm 1\}.$$

How does this relate to Zarhin’s theorem?

<table>
<thead>
<tr>
<th>$\text{ST}(H^1(A))$</th>
<th>$\text{ST}(H^2(X))$</th>
<th>$\bar{\rho}$</th>
<th>E_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)$</td>
<td>$U(1)$</td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td>$SU(2)$</td>
<td>$SO(3)$</td>
<td>19</td>
<td>R</td>
</tr>
<tr>
<td>$U(1) \times U(1)$</td>
<td>$U(1) \times U(1)$</td>
<td>18</td>
<td>$C \times C$</td>
</tr>
<tr>
<td>$U(1) \times SU(2)$</td>
<td>$U(2)$</td>
<td>18</td>
<td>C</td>
</tr>
<tr>
<td>$SU(2) \times SU(2)$</td>
<td>$SO(4)$</td>
<td>18</td>
<td>R</td>
</tr>
<tr>
<td>USp(4)</td>
<td>SO(5)</td>
<td>17</td>
<td>R</td>
</tr>
</tbody>
</table>

Exercise (open!)

Recover the classification of Sato-Tate groups of abelian surfaces. Do non-Kummer surfaces with $\bar{\rho} = 18$ account for the 3 missing groups?
Zarhin’s theorem for Kummer surfaces

For X the Kummer of an abelian surface A, we have

$$\text{ST}(H^2(X)) = \text{ST}(H^1(A))/\{\pm 1\}, \quad \text{ST}(H^2(X)) = \text{ST}(H^1(A))/\{\pm 1\}.$$

How does this relate to Zarhin’s theorem?

<table>
<thead>
<tr>
<th>$\text{ST}(H^1(A))$</th>
<th>$\text{ST}(H^2(X))$</th>
<th>$\bar{\rho}$</th>
<th>E_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)$</td>
<td>$U(1)$</td>
<td>20</td>
<td>\mathbb{C}</td>
</tr>
<tr>
<td>$SU(2)$</td>
<td>$SO(3)$</td>
<td>19</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>$U(1) \times U(1)$</td>
<td>$U(1) \times U(1)$</td>
<td>18</td>
<td>$\mathbb{C} \times \mathbb{C}$</td>
</tr>
<tr>
<td>$U(1) \times SU(2)$</td>
<td>$U(2)$</td>
<td>18</td>
<td>\mathbb{C}</td>
</tr>
<tr>
<td>$SU(2) \times SU(2)$</td>
<td>$SO(4)$</td>
<td>18</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>USp(4)</td>
<td>SO(5)</td>
<td>17</td>
<td>\mathbb{R}</td>
</tr>
</tbody>
</table>

Exercise (open!)

Recover the classification of Sato-Tate groups of abelian surfaces. Do non-Kummer surfaces with $\bar{\rho} = 18$ account for the 3 missing groups?
Zarhin’s theorem for Kummer surfaces

For X the Kummer of an abelian surface A, we have

$$\text{ST}(H^2(X)) \circ \text{ST}(H^1(A))/\{\pm 1\}, \quad \text{ST}(H^2(X)) = \text{ST}(H^1(A))/\{\pm 1\}.$$

How does this relate to Zarhin’s theorem?

<table>
<thead>
<tr>
<th>$\text{ST}(H^1(A))$</th>
<th>$\text{ST}(H^2(X))$</th>
<th>$\overline{\rho}$</th>
<th>$E_{\mathbb{R}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)$</td>
<td>$U(1)$</td>
<td>20</td>
<td>\mathbb{C}</td>
</tr>
<tr>
<td>$SU(2)$</td>
<td>$SO(3)$</td>
<td>19</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>$U(1) \times U(1)$</td>
<td>$U(1) \times U(1)$</td>
<td>18</td>
<td>$\mathbb{C} \times \mathbb{C}$</td>
</tr>
<tr>
<td>$U(1) \times SU(2)$</td>
<td>$U(2)$</td>
<td>18</td>
<td>\mathbb{C}</td>
</tr>
<tr>
<td>$SU(2) \times SU(2)$</td>
<td>$SO(4)$</td>
<td>18</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>USp(4)</td>
<td>SO(5)</td>
<td>17</td>
<td>\mathbb{R}</td>
</tr>
</tbody>
</table>

Exercise (open!)

Recover the classification of Sato-Tate groups of abelian surfaces. Do non-Kummer surfaces with $\overline{\rho} = 18$ account for the 3 missing groups?
A classification of Sato-Tate groups?

Problem

Using Zarhin’s theorem, classify the possible Sato-Tate groups associated to K3 surfaces of arbitrary rank. In particular, what are the possible zero trace densities besides 0, 1/2?

Note that given $\bar{\rho}$ and $E_\mathbb{R}$, $\text{ST}(M)$ is determined by its action on $\text{NS}(X_K)_\mathbb{R}$ (because $\text{ST}(M)^\circ$ is “as large as possible”).

Beware that unlike for abelian varieties, one is unlikely to find interesting examples “by accident” (compare Jahnel’s talk). We’ll discuss the reason later.
A classification of Sato-Tate groups?

Problem

Using Zarhin’s theorem, classify the possible Sato-Tate groups associated to K3 surfaces of arbitrary rank. In particular, what are the possible zero trace densities besides 0, 1/2?

Note that given \(\bar{\rho} \) and \(E_\mathbb{R} \), \(ST(M) \) is determined by its action on \(\text{NS}(X_K)^{\mathbb{R}} \) (because \(ST(M)^\circ \) is “as large as possible”).

Beware that unlike for abelian varieties, one is unlikely to find interesting examples “by accident” (compare Jahnel’s talk). We’ll discuss the reason later.
A classification of Sato-Tate groups?

Problem

Using Zarhin’s theorem, classify the possible Sato-Tate groups associated to K3 surfaces of arbitrary rank. In particular, what are the possible zero trace densities besides 0, 1/2?

Note that given $\overline{\rho}$ and $E_{\mathbb{R}}$, $\text{ST}(M)$ is determined by its action on $\text{NS}(X_{\overline{K}})_{\mathbb{R}}$ (because $\text{ST}(M)^{\circ}$ is “as large as possible”).

Beware that unlike for abelian varieties, one is unlikely to find interesting examples “by accident” (compare Jahnel’s talk). We’ll discuss the reason later.
Contents

1 Overview

2 Construction of the Sato-Tate group [S, BK1, BK2]

3 Example in weight 1: abelian varieties [FKRS]

4 Example in weight 2: K3 surfaces [?]

5 Example in weight 3: hypergeometric motives [FKS]

6 References
We now assume M has weight 3 and Hodge vector $(1, 1, 1, 1)$. There is no universal family of such motives (more on this later), so we won’t be able to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

- A direct sum of a weight 2 newform and a weight 4 newform.
- A symmetric cube of an elliptic curve.
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve.
- A tensor product of a weight 2 newform and a weight 3 newform (with nebentype).
- A motive from the Dwork pencil.
A class of motives

We now assume M has weight 3 and Hodge vector $(1, 1, 1, 1)$. There is no universal family of such motives (more on this later), so we won’t be able to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

- A direct sum of a weight 2 newform and a weight 4 newform.
- A symmetric cube of an elliptic curve.
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve.
- A tensor product of a weight 2 newform and a weight 3 newform (with nebentype).
- A motive from the Dwork pencil.
A class of motives

We now assume M has weight 3 and Hodge vector $(1, 1, 1, 1)$. There is no universal family of such motives (more on this later), so we won’t be able to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

- A direct sum of a weight 2 newform and a weight 4 newform.
- A symmetric cube of an elliptic curve.
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve.
- A tensor product of a weight 2 newform and a weight 3 newform (with nebentype).
- A motive from the Dwork pencil.
A class of motives

We now assume M has weight 3 and Hodge vector $(1, 1, 1, 1)$. There is no universal family of such motives (more on this later), so we won’t be able to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

- A direct sum of a weight 2 newform and a weight 4 newform.
- A symmetric cube of an elliptic curve.
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve.
- A tensor product of a weight 2 newform and a weight 3 newform (with nebentype).
- A motive from the Dwork pencil.
A class of motives

We now assume M has weight 3 and Hodge vector $(1, 1, 1, 1)$. There is no universal family of such motives (more on this later), so we won’t be able to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

- A direct sum of a weight 2 newform and a weight 4 newform.
- A symmetric cube of an elliptic curve.
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve.
- A tensor product of a weight 2 newform and a weight 3 newform (with nebentype).
- A motive from the Dwork pencil.
A class of motives

We now assume M has weight 3 and Hodge vector $(1, 1, 1, 1)$. There is no universal family of such motives (more on this later), so we won’t be able to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

- A direct sum of a weight 2 newform and a weight 4 newform.
- A symmetric cube of an elliptic curve.
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve.
- A tensor product of a weight 2 newform and a weight 3 newform (with nebentype).
- A motive from the Dwork pencil.
We now assume M has weight 3 and Hodge vector $(1, 1, 1, 1)$. There is no universal family of such motives (more on this later), so we won’t be able to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

- A direct sum of a weight 2 newform and a weight 4 newform.
- A symmetric cube of an elliptic curve.
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve.
- A tensor product of a weight 2 newform and a weight 3 newform (with nebentype).
- A motive from the Dwork pencil.
Classification of groups

Theorem ([FKS])

Take M as above.

(a) There are 26 conjugacy classes of subgroups of $\text{USp}(4)$ satisfying $(ST1), (ST2), (ST3)$.

(b) Of these, at least 25 are realized as $\text{ST}(M)$ for suitable M.

Due to the changed position of the Hodge circles, the options for $\text{ST}(M)^{\circ}$ are not the same as for abelian surfaces:

- $\text{U}(1)$ (new position), $\text{SU}(2)$ (new position), $\text{U}(2)$ (new group),
 - $\text{U}(1) \times \text{U}(1)$, $\text{U}(1) \times \text{SU}(2)$, $\text{SU}(2) \times \text{SU}(2)$, $\text{USp}(4)$.

The maximum component order is 12. The zero densities are 0, 1/2, 3/4 and possibly 5/8.
Classification of groups

Theorem ([FKS])

Take M as above.

(a) There are 26 conjugacy classes of subgroups of $\text{USp}(4)$ satisfying $(ST1)$, $(ST2)$, $(ST3)$.

(b) Of these, at least 25 are realized as $\text{ST}(M)$ for suitable M.

Due to the changed position of the Hodge circles, the options for $\text{ST}(M)^\circ$ are not the same as for abelian surfaces:

- $\text{U}(1)$ (new position), $\text{SU}(2)$ (new position), $\text{U}(2)$ (new group), $\text{U}(1) \times \text{U}(1)$, $\text{U}(1) \times \text{SU}(2)$, $\text{SU}(2) \times \text{SU}(2)$, $\text{USp}(4)$.

The maximum component order is 12. The zero densities are 0, 1/2, 3/4 and possibly 5/8.
Classification of groups

Theorem ([FKS])

Take M as above.

(a) There are 26 conjugacy classes of subgroups of $\text{USp}(4)$ satisfying $(ST1)$, $(ST2)$, $(ST3)$.

(b) Of these, at least 25 are realized as $\text{ST}(M)$ for suitable M.

Due to the changed position of the Hodge circles, the options for $\text{ST}(M)^\circ$ are not the same as for abelian surfaces:

- $\text{U}(1)$ (new position), $\text{SU}(2)$ (new position), $\text{U}(2)$ (new group), $\text{U}(1) \times \text{U}(1), \text{U}(1) \times \text{SU}(2), \text{SU}(2) \times \text{SU}(2), \text{USp}(4)$.

The maximum component order is 12. The zero densities are 0, 1/2, 3/4 and possibly 5/8.
Classification of groups

Theorem ([FKS])

Take M as above.

(a) There are 26 conjugacy classes of subgroups of $\text{USp}(4)$ satisfying $(ST1)$, $(ST2)$, $(ST3)$.

(b) Of these, at least 25 are realized as $\text{ST}(M)$ for suitable M.

Due to the changed position of the Hodge circles, the options for $\text{ST}(M)^\circ$ are not the same as for abelian surfaces:

- $\text{U}(1)$ (new position)
- $\text{SU}(2)$ (new position)
- $\text{U}(2)$ (new group)
- $\text{U}(1) \times \text{U}(1)$
- $\text{U}(1) \times \text{SU}(2)$
- $\text{SU}(2) \times \text{SU}(2)$
- $\text{USp}(4)$

The maximum component order is 12. The zero densities are 0, $1/2$, $3/4$ and possibly $5/8$.
Classification of groups

Theorem ([FKS])

Take M as above.

(a) There are 26 conjugacy classes of subgroups of $\text{USp}(4)$ satisfying $(ST1)$, $(ST2)$, $(ST3)$.

(b) Of these, at least 25 are realized as $\text{ST}(M)$ for suitable M.

Due to the changed position of the Hodge circles, the options for $\text{ST}(M)$ are not the same as for abelian surfaces:

$$U(1) \text{ (new position)}, \text{SU}(2) \text{ (new position)}, U(2) \text{ (new group)}, U(1) \times U(1), U(1) \times \text{SU}(2), \text{SU}(2) \times \text{SU}(2), \text{USp}(4).$$

The maximum component order is 12. The zero densities are 0, $1/2$, $3/4$ and possibly $5/8$.
Taxonomy of sources

Let us explain how these groups arise from our examples. In all cases, the upper bound is achieved by a “generic” example.

- A direct sum of a weight 2 newform and a weight 4 newform: $\text{ST}(M)^{\circ} \subseteq \text{SU}(2) \times \text{SU}(2)$. We also see $\text{U}(1) \times \text{U}(1)$ and $\text{U}(1) \times \text{SU}(2)$.

- A symmetric cube of an elliptic curve: $\text{ST}(M)^{\circ} \subseteq \text{SU}(2)$. We also see $\text{U}(1)$.

- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve: $\text{ST}(M)^{\circ} \subseteq \text{U}(2)$. We also see $\text{U}(1)$ and $\text{U}(1) \times \text{U}(1)$.

- A tensor product of a weight 2 newform and a weight 3 newform: see previous case.

- A motive from the Dwork pencil: $\text{ST}(M)^{\circ} \subseteq \text{USp}(4)$. See below.
Taxonomy of sources

Let us explain how these groups arise from our examples. In all cases, the upper bound is achieved by a “generic” example.

- A direct sum of a weight 2 newform and a weight 4 newform: $\text{ST}(M) \subseteq \text{SU}(2) \times \text{SU}(2)$. We also see $U(1) \times U(1)$ and $U(1) \times \text{SU}(2)$.

- A symmetric cube of an elliptic curve: $\text{ST}(M) \subseteq \text{SU}(2)$. We also see $U(1)$.

- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve: $\text{ST}(M) \subseteq \text{U}(2)$. We also see $U(1)$ and $U(1) \times U(1)$.

- A tensor product of a weight 2 newform and a weight 3 newform: see previous case.

- A motive from the Dwork pencil: $\text{ST}(M) \subseteq \text{USp}(4)$. See below.
Taxonomy of sources

Let us explain how these groups arise from our examples. In all cases, the upper bound is achieved by a “generic” example.

- A direct sum of a weight 2 newform and a weight 4 newform: $\text{ST}(M) \subseteq \text{SU}(2) \times \text{SU}(2)$. We also see $\text{U}(1) \times \text{U}(1)$ and $\text{U}(1) \times \text{SU}(2)$.

- A symmetric cube of an elliptic curve: $\text{ST}(M) \subseteq \text{SU}(2)$. We also see $\text{U}(1)$.

- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve: $\text{ST}(M) \subseteq \text{U}(2)$. We also see $\text{U}(1)$ and $\text{U}(1) \times \text{U}(1)$.

- A tensor product of a weight 2 newform and a weight 3 newform: see previous case.

- A motive from the Dwork pencil: $\text{ST}(M) \subseteq \text{USp}(4)$. See below.
Taxonomy of sources

Let us explain how these groups arise from our examples. In all cases, the upper bound is achieved by a “generic” example.

- A direct sum of a weight 2 newform and a weight 4 newform: $\text{ST}(M) \subseteq \text{SU}(2) \times \text{SU}(2)$. We also see $\text{U}(1) \times \text{U}(1)$ and $\text{U}(1) \times \text{SU}(2)$.

- A symmetric cube of an elliptic curve: $\text{ST}(M) \subseteq \text{SU}(2)$. We also see $\text{U}(1)$.

- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve: $\text{ST}(M) \subseteq \text{U}(2)$. We also see $\text{U}(1)$ and $\text{U}(1) \times \text{U}(1)$.

- A tensor product of a weight 2 newform and a weight 3 newform: see previous case.

- A motive from the Dwork pencil: $\text{ST}(M) \subseteq \text{USp}(4)$. See below.
Taxonomy of sources

Let us explain how these groups arise from our examples. In all cases, the upper bound is achieved by a “generic” example.

- A direct sum of a weight 2 newform and a weight 4 newform: \(\text{ST}(M) \supseteq \text{SU}(2) \times \text{SU}(2) \). We also see \(\text{U}(1) \times \text{U}(1) \) and \(\text{U}(1) \times \text{SU}(2) \).
- A symmetric cube of an elliptic curve: \(\text{ST}(M) \supseteq \text{SU}(2) \). We also see \(\text{U}(1) \).
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve: \(\text{ST}(M) \supseteq \text{U}(2) \). We also see \(\text{U}(1) \) and \(\text{U}(1) \times \text{U}(1) \).
- A tensor product of a weight 2 newform and a weight 3 newform: see previous case.
- A motive from the Dwork pencil: \(\text{ST}(M) \supseteq \text{USp}(4) \). See below.
Taxonomy of sources

Let us explain how these groups arise from our examples. In all cases, the upper bound is achieved by a “generic” example.

- A direct sum of a weight 2 newform and a weight 4 newform: \(ST(M)^{\circ} \subseteq SU(2) \times SU(2) \). We also see \(U(1) \times U(1) \) and \(U(1) \times SU(2) \).
- A symmetric cube of an elliptic curve: \(ST(M)^{\circ} \subseteq SU(2) \). We also see \(U(1) \).
- A tensor product of an elliptic curve with the reduced symmetric square of a CM elliptic curve: \(ST(M)^{\circ} \subseteq U(2) \). We also see \(U(1) \) and \(U(1) \times U(1) \).
- A tensor product of a weight 2 newform and a weight 3 newform: see previous case.
- A motive from the Dwork pencil: \(ST(M)^{\circ} \subseteq USp(4) \). See below.
Degenerations of Sato-Tate groups

Over $\overline{\mathbb{Q}}$, the j-line contains infinitely many CM points; similarly, any positive-dimensional family of weight 1 motives contains infinitely many special subvarieties of codimension 1 where the Sato-Tate group drops (as in the André-Oort conjecture).

By contrast, for motives of weight greater than 1, a Hodge structure cannot vary arbitrarily in families; its variation is constrained by Griffiths transversality (thus precluding a universal family). Refining a prediction of de Jong, the generalized André-Oort conjecture (see Klingler’s AMS SLC 2015 lecture) suggests that jumping can only occur on a Zariski dense subset if the family “arises from a Shimura variety.”

This is consistent with our experimental data: in the Dwork pencil, one expects that over all K, only finitely many fibers have $\text{ST}(M) \neq \text{USp}(4)$. Over \mathbb{Q}, we found no such examples (excluding the Fermat fiber).
Degenerations of Sato-Tate groups

Over \(\overline{\mathbb{Q}} \), the \(j \)-line contains infinitely many CM points; similarly, any positive-dimensional family of weight 1 motives contains infinitely many special subvarieties of codimension 1 where the Sato-Tate group drops (as in the André-Oort conjecture).

By contrast, for motives of weight greater than 1, a Hodge structure cannot vary arbitrarily in families; its variation is constrained by Griffiths transversality (thus precluding a universal family). Refining a prediction of de Jong, the generalized André-Oort conjecture (see Klingler’s AMS SLC 2015 lecture) suggests that jumping can only occur on a Zariski dense subset if the family “arises from a Shimura variety.”

This is consistent with our experimental data: in the Dwork pencil, one expects that over all \(K \), only finitely many fibers have \(\text{ST}(M) \neq \text{USp}(4) \). Over \(\mathbb{Q} \), we found no such examples (excluding the Fermat fiber).
Degenerations of Sato-Tate groups

Over $\overline{\mathbb{Q}}$, the j-line contains infinitely many CM points; similarly, any positive-dimensional family of weight 1 motives contains infinitely many special subvarieties of codimension 1 where the Sato-Tate group drops (as in the André-Oort conjecture).

By contrast, for motives of weight greater than 1, a Hodge structure cannot vary arbitrarily in families; its variation is constrained by Griffiths transversality (thus precluding a universal family). Refining a prediction of de Jong, the generalized André-Oort conjecture (see Klingler’s AMS SLC 2015 lecture) suggests that jumping can only occur on a Zariski dense subset if the family “arises from a Shimura variety.”

This is consistent with our experimental data: in the Dwork pencil, one expects that over all K, only finitely many fibers have $\text{ST}(M) \neq \text{USp}(4)$. Over \mathbb{Q}, we found no such examples (excluding the Fermat fiber).
Contents

1. Overview
2. Construction of the Sato-Tate group [S, BK1, BK2]
3. Example in weight 1: abelian varieties [FKRS]
4. Example in weight 2: K3 surfaces [?]
5. Example in weight 3: hypergeometric motives [FKS]
6. References
References

